Метод дисперсионного картирования ЭКГ: диагностические возможности в оценке состояния сердечно-сосудистой системы при проведении медосмотров

А.А. Катырева, П.В. Стручков, Н.А. Рудникова, Т.В. Зарубина, Ю.Г. Липкин, О.С. Цека, Ю.М. Петренко

ФГУЗ Клиническая больница № 85 ФМБА России, кафедра клинической физиологии и функциональной диагностики ФГОУ ИПК ФМБА России, кафедра медицинской кибернетики и информатики, кафедра медицинской биофизики ГОУ ВПО РГМУ Росздрава им. Н.И. Пирогова, г. Москва

В последние годы большое внимание исследователей и практических врачей привлекают методы компьютерного анализа ЭКГ: анализ вариабельности сердечного ритма (ВСР), оценка поздних потенциалов желудочков и предсердий (ППЖ, ППП), определение показателей дисперсий временных и амплитудных параметров кардиоцикла (дисперсия QT, альтернация зубца T) и др. [2, 4]. Применение компьютерных технологий в обработке электрофизиологической информации позволяет значительно ускорить получение результатов исследования, стандартизировать методику, а также снизить влияние субъективного фактора.

Желание исследователей повысить информативность стандартной ЭКГ покоя привело к появлению нового метода — дисперсионного картирования ЭКГ (ДК ЭКГ), основанного на анализе низкоамплитудных колебаний ЭКГ сигнала [1–3]. Главным отличительным признаком метода является оценка малых колебаний регистрируемых параметров, которые при приближении к точкам потери «структурной устойчивости» начинают изменяться раньше, чем это проявится в величине средних значений параметров. Это дает возможность использовать характеристики (амплитудные и временные) низкоамплитудных колебаний в качестве эффективных диагностических маркеров приближающейся структурной перестройки.

Технологии дисперсионного картирования ЭКГ реализованы в приборе «Кардиовизор-06с» (КВ), разработанном НПФ «БИОСС» (Москва). Прибор предложен к использованию в 2003 г. и относится к новому поколению инструментов для кардиоскрининга [3]. КВ представляет собой компьютерный анализатор ЭКГ, в котором анализ ЭКГ сигнала базируется на оценке низкоамплитудных (10–30 мкВ) колебаний сигнала от цикла к циклу, которые можно выявить на всем протяжении кардиоцикла.

Прибор «Кардиовизор-06с» в настоящее время успешно проходит медицинские испытания в различных лечебно-диагностических учреждениях страны. Результаты, полученные в этих исследованиях, свидетельствуют о возможности использования КВ для определения и подтверждения ишемических изменений миокарда, а также контроля динамики этих изменений (работы под руководством Г.В. Рябыкиной, Г.Г. Иванова, С.И. Федоровой и др.).

Остается невыясненным вопрос о диагностических возможностях «Кардиовизора-06с» в выявлении других диагностически значимых изменений миокарда, в частности гипертрофии левого желудочка, нарушений ритма и электрической нестабильности миокарда, что имеет большое значение при проведении медосмотров.

Целью работы стала оценка возможностей дисперсионного картирования ЭКГ для выявления диагностически значимых изменений сердца при проведении медосмотров.

Материалы и методы

На базе отделения функциональной диагностики ФГУЗ КБ № 85 ФМБА России был обследован 261 пациент (146 мужчин и 115 женщин), средний возраст 53 \pm 13,6 лет.

По клиническому диагнозу все обследованные были разделены на группы: 1-я группа (169 человек) с диагнозом артериальная гипертония I–II степени и/или ишемическая болезнь сердца (стенокардия напряжения ФК I–II, постинфарктный кардиосклероз), 2-ая группа (92 человека) без ранее зарегистрированного кардиологического диагноза.

Всем пациентам проводилось исследование на КВ (в покое и после нагрузки), а также методики для верификации патологических изменений: электрокардиография (ЭКГ) покоя на приборе «FCP-4101» («FUKUDA DENSHI», Япония), эхокардиография (ЭхоКГ) на аппарате «Vivid 7 Dimension» («GE», США), холтеровское 24-часовое мониторирование (ХМ) с помощью программ «Эксперт» (ООО «НИМП ЕСН», г. Саров) и «Икар» («Медиком», г. Москва), кардиоин-

тервалография (КИГ) и электрокардиография высокого разрешения (ЭКГ ВР) с помощью полианализатора «Поли-Спектр» («Нейрософт», г. Иваново).

Чтобы оценить эффективность использования «Кардиовизора-06с» для выявления различных патологических изменений, был проведен сравнительный анализ данных, полученных на КВ, с данными общепринятых методов диагностики. Для статистического анализа данных использовалась программный пакет Statistica 7.0.

Прибор «Кардиовизор-06с» достаточно прост в применении: используются стандартные отведения от конечностей, не требуется дополнительной подготовки пациента. Процесс интерпретации полученных результатов формализован и доступен врачам любой специальности. Регистрация ЭКГ-сигнала происходит в течение 30 или 60 с. Затем на экране дисплея формируется автоматическое заключение и «портрет сердца».

«Портрет сердца» представляет собой цифровую модель дисперсионных характеристик на поверхности квазиэпикарда (компьютерной модели сердца). Портрет формируется в двух проекциях: вид со стороны правых камер сердца и левых камер. Цвет квазиэпикарда в норме зелено-голубой. При различных отклонениях от нормы цвет меняется до желтого или красного. Чем больше площадь квазиэпикарда, окрашенная красным цветом - тем больше выраженность отклонения [3].

Автоматическое заключение содержит информацию о выраженности отклонений, вероятной их причине и рекомендуемых дальнейших действиях. Заключение состоит из текстовой скрининг оценки, интегральных показателей «миокард» и «ритм» и показателей детализации.

Показатель «миокард» представляет собой интегральный индекс отклонений от нормы дисперсионных характеристик низко-амплитудных вариаций ЭКГ. «Ритм» – интегральный индекс нарушений ритма и отклонений от нормы показателей вариабельности ритма. Оба показателя изменяется в диапазоне от 0 до 100%. Чем больше значение индикатора — тем больше отклонение от нормы. В табл. 1 представлены данные о соотношении значений интегральных показателей, цвета квазиэпикарда портрета сердца и состояния сердечно-сосудистой системы обследуемого по рекомендациям разработчиков.

Таблица 1. Шкала диапазонов значений индикаторов «Миокард» и «Ритм» и классификация состояния сердца по данным прибора «Кардиовизор-06с»

Состояние	Цвет на «ква- зиэпикарде»	Величина индикатора «миокард», %	Величина индикатора «ритм», %	
Значимых отклонений нет	Зеленый	0–14	0–20	
Пограничное состояние	Желтый	15–19	21–50	
Невыраженная патология	Желтый	20–23	51–80	
Патология	Коричневый	24-47	-	
Выраженная патология	Красный	> 48	> 81	

Детализация осуществляется по девяти группам автоматического классификатора и содержит дополнительную информацию о вероятных патологических отклонениях и их локализации. Данные представлены в табл. 2.

Таблица 2. Группы отклонений дисперсионных характеристик

Группа	Показатели групп анализируемых дисперсий	
G1	Деполяризация правого предсердия	
G2	Деполяризация левого предсердия	
G3	Деполяризация правого желудочка	
G4	Деполяризация левого желудочка	
G5	Реполяризация правого желудочка	
G6	Реполяризация левого желудочка	
G7	Симметрия деполяризации желудочков	
G8	Внутрижелудочковые блокады	
G9	Гипертрофия желудочков	

Разграничение нормы и патологии проведено разработчиками прибора с использованием стандартной методологии клинико-статистического анализа на основе обучения классификатора прибора на контрольной группе здоровых лиц, а также группе лиц со строго верифицированными заболеваниями, включающими гипертоническую болезнь, различные формы ишемической болезни сердца, пороки сердца и др [1, 3].

Результаты

1. На первом этапе работы были оценены воспроизводимость и повторяемость «портретов» сердца у лиц разного возраста по колебаниям значений интегральных показателей «миокард» и «ритм».

Стабильность состояния сердца оценивалась по степени сходства «портретов», получаемых на КВ. На последовательных портретах сердца, снятых за время одного исследования в положении сидя, оценивалась воспроизводимость портретов. Повторяемость определялась в разное время одного дня, в разные дни одной недели, через 1 неделю, через 1 и 6 месяцев у лиц с относительно стабильным состоянием здоровья. Результаты представлены в табл. 3.

Таблица 3. Показатели воспроизводимости и повторяемости величин ∆ «Миокард» и ∆ «Ритм» у обследуемых разного возраста (Медиана, 25- и 75-квартиль)

Возраст/ количество	Показатель	Минимум значения	Максимум значения	Допустимые колебания	Воспроизво- димость	Повторя- емость
Младше 50 лет/ N=21	∆«Миокард»	0	8	8	1 (0;2)	1,5 (1;4)
	∆ «Ритм»	1	43	30	11 (5;20)	9 (6;15)
Старше 50 лет/ N=16	Δ«Миокард»	0	4	8	1 (0;2)	3 (1;7)
	Δ «Ритм»	1	33	30	7 (3;17)	17 (2;34)

Примечание: Δ«Миокард» и Δ«Ритм» — разница между соответствующими показателями первого обследования с последующими.

Полученные данные свидетельствуют о том, что «Кардиовизор-06с» обладает высокой воспроизводимостью и повторяемостью «портретов сердца» у лиц разного возраста. Это позволяет оценивать стабильность процессов метаболизма миокарда в разное время суток и в разные дни.

- 2. На следующем этапе был проведен сравнительный анализ данных, полученных на КВ, и результатов эхокардиографии. Так, по данным ЭхоКГ (всего 237 человек) было выявлено:
- среди 11 пациентов с нарушениями локальной сократимости и сниженной фракцией выброса (<50%), у 10 на КВ отмечались повышенные значения всех показателей детализации (G1–G9), показатель «Миокард» > 21% и красное окрашивание 15 зоны на «портрете сердца». У всех (10 человек) этих пациентов по данным XM отмечалась признаки ишемии миокарда (длительные эпизоды диагностически значимой депрессии сегмента ST);
- в группе из 72 пациентов с гипертрофией межжелудочковой перегородки (МЖП) или обеих стенок левого желудочка, у 68–75% на КВ регистрировались показатели G7 и G9 > 1. Замечено, что наибольшая чувствительность метода (75%) была выявлена у пациентов с асимметричной гипертрофией МЖП.
- 3. Затем было проведено сопоставление результатов КВ и холтеровского мониторирования. Так, по данным ХМ (всего 120 человек) выявлено:
- среди 25 человек с нарушениями ритма (экстрасистолия больше возрастной нормы), у 19 (75%) значение показателя «Ритм» на КВ составило 20–80%:
- 38 человек имели такие нарушения ритма, как эпизоды фибрилляции предсердий, пробежки наджелудочковой тахикардии (до 16 комплексов) и эпизоды миграция водителя ритма, у 24 (65%) из них были изменения на КВ повышенные значение показателей G1, G2 (>2), соответствующие процессам деполяризации и реполяризации обоих предсердий, а также показатель «Ритм» > 20%;
- среди 34 обследованных со сниженными показателями вариабельности ритма сердца (SDNN, ЦИ ниже возрастной нормы), у 23 (70%) значения показателя «Ритм» на КВ составили 35–90%.
- 4. Одним из признаков электрической нестабильности миокарда является наличие поздних потенциалов желудочков, поэтому на следующем этапе был проведен сравнительный анализ данных КВ и электрокардиографией высокого разрешения. По данным ЭКГ

BP (всего 120 человек) ППЖ были выявлены у 64 человек. За критерии наличия ППЖ были приняты рекомендации Комитета Европейской и Американской Ассоциации Кардиологов: TotQRS > 114 мс, RMS40 < 20 мкВ, LAS40 > 38 мс.

С использованием методов статистической обработки нами было сформировано правило зависимости наличия признаков ЭНМ от ряда показателей ДК ЭКГ. Так, при сочетании показателей КВ G3 \geq 1, G4 \geq 1, G5 \leq 1, G9 \geq 8 и «Ритм» от 22 до 42 в 75% случаев выявлялись признаки ЭНМ.

Выводы

- 1. Метод дисперсионного картирования ЭКГ обладает высокой воспроизводимостью и повторяемостью «портретов сердца» у лиц разного возраста, что позволяет оценивать стабильность процессов метаболизма миокарда в разное время суток и в одно и то же время в разные дни. Определенные (индивидуальные) особенности показателей «Кардиовизора-Обс» сохраняются в период стабильности состояния сердечно-сосудистой системы.
- 2. Дисперсионное картирование ЭКГ выявляет лиц с нарушениями локальной сократимости левого желудочка, в том числе и постинфарктными изменениями, с чувствительностью 90%, гипертрофии левого желудочка 68–75% и нарушений ритма сердца 65–75%.
- 3. Дисперсионное картирование ЭКГ выявляет группу лиц с признаками электрической нестабильности миокарда (сниженные показатели вариабельности ритма, наличие поздних потенциалов желудочков) с чувствительностью 70–75%.

Таким образом, метод дисперсионного картирования ЭКГ помогает в выявлении группы лиц с диагностически значимыми изменениями сердечно-сосудистой системы, что является важным при проведении медосмотров.

Список литературы

- Иванов Г.Г., Сулла А.С. Метод дисперсионного картирования ЭКГ в клинической практике. Москва, 2008.
- 2. Новые методы электрокардиографии / Под ред. С.В. Грачева, Г.Г. Иванова, А.Л. Сыркина. М.: Техносфера, 2007. 552 с.
- Рябыкина Г.В., Сула А.С. Использование прибора «КардиоВизор-06с» для скрининговых обследований. Метод дисперсионного картирования. Пособие для врачей: Отдел новых методов диагностики РКНПК Минздрава РФ.
- Электрокардиография высокого разрешения / Под ред. Г.Г. Иванова, С.В. Грачева, А.Л. Сыркина. М.: Триада-Х, 2003.